Your browser doesn't support javascript.
loading
N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions.
Meng, Yuying; Voiry, Damien; Goswami, Anandarup; Zou, Xiaoxin; Huang, Xiaoxi; Chhowalla, Manish; Liu, Zhongwu; Asefa, Tewodros.
Afiliação
  • Meng Y; Department of Chemical and Biochemical Engineering, ⊥Department of Chemistry and Chemical Biology, ∥Department of Materials Science and Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.
J Am Chem Soc ; 136(39): 13554-7, 2014 Oct 01.
Article em En | MEDLINE | ID: mdl-25188332
ABSTRACT
Replacing rare and expensive metal catalysts with inexpensive and earth-abundant ones is currently among the major goals of sustainable chemistry. Herein we report the synthesis of N-, O-, and S-tridoped, polypyrrole-derived nanoporous carbons (NOSCs) that can serve as metal-free, selective electrocatalysts and catalysts for oxygen reduction reaction (ORR) and alcohol oxidation reaction (AOR), respectively. The NOSCs are synthesized via polymerization of pyrrole using (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, followed by carbonization of the resulting S-containing polypyrrole/silica composite materials and then removal of the silica templates. The NOSCs exhibit good catalytic activity toward ORR with low onset potential and low Tafel slope, along with different electron-transfer numbers, or in other words, different ratios H2O/H2O2 as products, depending on the relative amount of colloidal silica used as templates. The NOSCs also effectively catalyze AOR at relatively low temperature, giving good conversions and high selectivity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article