Your browser doesn't support javascript.
loading
Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet.
Meshcheriakova, O; Chadov, S; Nayak, A K; Rößler, U K; Kübler, J; André, G; Tsirlin, A A; Kiss, J; Hausdorf, S; Kalache, A; Schnelle, W; Nicklas, M; Felser, C.
Afiliação
  • Meshcheriakova O; Graduate School of Excellence "Materials Science in Mainz" Johannes Gutenberg-Universtität, 55099 Mainz, Germany and Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Chadov S; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Nayak AK; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Rößler UK; Leibniz-Institut für Festkörper-und Werkstoffforschung IFW, Helmholtz Strasse 20, 01171 Dresden, Germany.
  • Kübler J; Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
  • André G; Laboratoire Léon Brillouin, CEA-CNRS Saclay, 91191 Gif-sur-Yvette Cedex, France.
  • Tsirlin AA; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Kiss J; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Hausdorf S; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Kalache A; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Schnelle W; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Nicklas M; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
  • Felser C; Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
Phys Rev Lett ; 113(8): 087203, 2014 Aug 22.
Article em En | MEDLINE | ID: mdl-25192122
ABSTRACT
Noncollinear magnets provide essential ingredients for the next generation memory technology. It is a new prospect for the Heusler materials, already well known due to the diverse range of other fundamental characteristics. Here, we present a combined experimental and theoretical study of novel noncollinear tetragonal Mn(2)RhSn Heusler material exhibiting unusually strong canting of its magnetic sublattices. It undergoes a spin-reorientation transition, induced by a temperature change and suppressed by an external magnetic field. Because of the presence of Dzyaloshinskii-Moriya exchange and magnetic anisotropy, Mn(2)RhSn is suggested to be a promising candidate for realizing the Skyrmion state in the Heusler family.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article