Your browser doesn't support javascript.
loading
Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.
Ngo, Jennifer P; Kar, Saptarshi; Kett, Michelle M; Gardiner, Bruce S; Pearson, James T; Smith, David W; Ludbrook, John; Bertram, John F; Evans, Roger G.
Afiliação
  • Ngo JP; Department of Physiology, Monash University, Melbourne, Australia;
  • Kar S; School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and.
  • Kett MM; Department of Physiology, Monash University, Melbourne, Australia;
  • Gardiner BS; School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and.
  • Pearson JT; Department of Physiology, Monash University, Melbourne, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia;
  • Smith DW; School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and.
  • Ludbrook J; The University of Adelaide, Adelaide, Australia.
  • Bertram JF; Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia;
  • Evans RG; Department of Physiology, Monash University, Melbourne, Australia; Roger.Evans@monash.edu.
Am J Physiol Renal Physiol ; 307(10): F1111-22, 2014 Nov 15.
Article em En | MEDLINE | ID: mdl-25209866
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries (n = 1,628) were identified. Intrarenal arteries were largely divisible into two "types," characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Difusão / Córtex Renal / Modelos Biológicos Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Difusão / Córtex Renal / Modelos Biológicos Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article