Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.
Phys Rev Lett
; 113(9): 093603, 2014 Aug 29.
Article
em En
| MEDLINE
| ID: mdl-25215983
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the ß factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of ß=98.43%±0.04% for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The ß factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2014
Tipo de documento:
Article