Your browser doesn't support javascript.
loading
Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.
Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M.
Afiliação
  • Mirzadeh M; Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Gibou F; Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Squires TM; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett ; 113(9): 097701, 2014 Aug 29.
Article em En | MEDLINE | ID: mdl-25216005
ABSTRACT
We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article