Your browser doesn't support javascript.
loading
Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
Lipfert, Jan; Skinner, Gary M; Keegstra, Johannes M; Hensgens, Toivo; Jager, Tessa; Dulin, David; Köber, Mariana; Yu, Zhongbo; Donkers, Serge P; Chou, Fang-Chieh; Das, Rhiju; Dekker, Nynke H.
Afiliação
  • Lipfert J; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands; Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, Ludwig Maximilians University Munich, 80799 Munich, Germany; and.
  • Skinner GM; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Keegstra JM; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Hensgens T; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Jager T; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Dulin D; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Köber M; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Yu Z; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Donkers SP; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;
  • Chou FC; Departments of Biochemistry and.
  • Das R; Departments of Biochemistry and Physics, Stanford University, Stanford, CA 94305.
  • Dekker NH; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands; n.h.dekker@tudelft.nl.
Proc Natl Acad Sci U S A ; 111(43): 15408-13, 2014 Oct 28.
Article em En | MEDLINE | ID: mdl-25313077
ABSTRACT
RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force-torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed "P-RNA," and a highly underwound, left-handed state denoted "L-RNA." Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA-protein interactions at the single-molecule level.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / RNA de Cadeia Dupla / Torque Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / RNA de Cadeia Dupla / Torque Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article