Your browser doesn't support javascript.
loading
Improved osseointegration and interlocking capacity with dual acid-treated implants: a rabbit study.
Halldin, Anders; Jimbo, Ryo; Johansson, Carina B; Gretzer, Christina; Jacobsson, Magnus.
Afiliação
  • Halldin A; Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
  • Jimbo R; DENTSPLY Implants AB, Mölndal, Sweden.
  • Johansson CB; Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
  • Gretzer C; Dental Materials, Department of Prosthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  • Jacobsson M; DENTSPLY Implants AB, Mölndal, Sweden.
Clin Oral Implants Res ; 27(1): 22-30, 2016 Jan.
Article em En | MEDLINE | ID: mdl-25349918
ABSTRACT

AIM:

To investigate how osseointegration is affected by different nano- and microstructures. The hypothesis was that the surface structure created by dual acid treatment (AT-1), applied on a reduced topography, might achieve equivalent biomechanical performance as a rougher surface treated with hydrofluoric acid (HF). MATERIALS AND

METHODS:

In a preclinical rabbit study, three groups (I, II, and III) comprised of test and control implants were inserted in 30 rabbits. The microstructures of the test implants were either produced by blasting with coarse (I) or fine (II) titanium particles or remained turned (III). All test implants were thereafter treated with AT-1 resulting in three different test surfaces. The microstructure of the control implants was produced by blasting with coarse titanium particles thereafter treated with HF. The surface topography was characterized by interferometry. Biomechanical (removal torque) and histomorphometric (bone-implant contact; bone area) performances were measured after 4 or 12 weeks of healing.

RESULTS:

Removal torque measurement demonstrated that test implants in group I had an enhanced biomechanical performance compared to that of the control despite similar surface roughness value (Sa ). At 4 weeks of healing, group II test implants showed equivalent biomechanical performance to that of the control, despite a decreased Sa value. Group III test implants showed decreased biomechanical performance to that of the control.

CONCLUSIONS:

The results of the present study suggest that nano- and microstructure alteration by AT-1 on a blasted implant might enhance the initial biomechanical performance, while for longer healing time, the surface interlocking capacity seems to be more important.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Dentários / Osseointegração / Planejamento de Prótese Dentária / Implantação Dentária Endóssea Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Dentários / Osseointegração / Planejamento de Prótese Dentária / Implantação Dentária Endóssea Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article