Your browser doesn't support javascript.
loading
Low-temperature topochemical transformation of Bi13Pt3I7 into the new layered honeycomb metal Bi12Pt3I5.
Kaiser, Martin; Rasche, Bertold; Isaeva, Anna; Ruck, Michael.
Afiliação
  • Kaiser M; Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden (Germany), Fax: (+49) 35146337287.
Chemistry ; 20(51): 17152-60, 2014 Dec 15.
Article em En | MEDLINE | ID: mdl-25351182
ABSTRACT
Ordered single-crystals of the metallic subiodide Bi13 Pt3 I7 were grown and treated with n-butyllithium. At 45 °C, complete pseudomorphosis to Bi12 Pt3 I5 was achieved within two days. The new compound is air-stable and contains the same ${{{\hfill 2\atop \hfill \infty }}}$[(PtBi8/2 )3 I](n+) honeycomb nets and iodide layers as the starting material Bi13 Pt3 I7 , but does not include ${{{\hfill 1\atop \hfill \infty }}}$[BiI2 I4/2 ](-) iodidobismuthate strands. Electron microscopy and X-ray diffraction studies of solid intermediates visualize the process of the topochemical crystal-to-crystal transformation. In the electronic band structures of Bi13 Pt3 I7 and Bi12 Pt3 I5 , the vicinities of the Fermi levels are dominated by the intermetallic fragments. Upon the transformation of Bi13 Pt3 I7 into Bi12 Pt3 I5 , the intermetallic part is oxidized and the Fermi level is lowered by 0.16 eV. Whereas in Bi13 Pt3 I7 the intermetallic layers do not interact across the iodidobismuthate spacers (two-dimensional metal), they couple in Bi12 Pt3 I5 and form a three-dimensional metal.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article