Your browser doesn't support javascript.
loading
Bone-Forming Capacity and Biodistribution of Bone Marrow-Derived Stromal Cells Directly Loaded Into Scaffolds: A Novel and Easy Approach for Clinical Application of Bone Regeneration.
Léotot, Julie; Lebouvier, Angélique; Hernigou, Philippe; Bierling, Philippe; Rouard, Hélène; Chevallier, Nathalie.
Afiliação
  • Léotot J; Université Paris-Est Créteil, Faculté de médecine, Laboratoire de "Bioingénierie Cellulaire, Tissulaire et Sanguine," Créteil, France.
Cell Transplant ; 24(10): 1945-55, 2015.
Article em En | MEDLINE | ID: mdl-25353374
ABSTRACT
In the context of clinical applications of bone regeneration, cell seeding into scaffolds needs to be safe and easy. Moreover, cell density also plays a crucial role in the development of efficient bone tissue engineering constructs. The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure on hydroxyapatite/ß-tricalcium phosphate (HA/ßTCP), as well as define optimal cell density and control the biodistribution of grafted cells. To this end, human bone marrow-derived stromal cells (hBMSCs) were seeded on HA/ßTCP scaffolds, and we have compared bone formation using an ectopic model. Our results demonstrated a significantly higher bone-forming capacity of hBMSCs directly loaded on HA/ßTCP during surgery compared to hBMSCs preseeded for 7 days in vitro on HA/ßTCP before ectopic implantation. The extent of new bone formation increases with increasing hBMSC densities quantitatively, qualitatively, and in frequency. Also, this study showed that grafted hBMSCs remained confined to the implantation site and did not spread toward other tissues, such as liver, spleen, lungs, heart, and kidneys. In conclusion, direct cell loading into a scaffold during surgery is more efficient for bone regeneration, as well as quick and safe. Therefore direct cell loading is suitable for clinical requirements and cell production control, making it a promising approach for orthopedic applications. Moreover, our results have provided evidence that the formation of a mature bone organ containing hematopoietic islets needs a sufficiently high local density of grafted hBMSCs, which should guide the optimal dose of cells for clinical use.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Regeneração Óssea / Células da Medula Óssea / Distribuição Tecidual / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Regeneração Óssea / Células da Medula Óssea / Distribuição Tecidual / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article