Your browser doesn't support javascript.
loading
Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
Gong, Bei; Shin, Minsang; Sun, Jiali; Jung, Che-Hun; Bolt, Edward L; van der Oost, John; Kim, Jeong-Sun.
Afiliação
  • Gong B; Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea;
  • Shin M; Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea;
  • Sun J; Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea;
  • Jung CH; Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea; Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea;
  • Bolt EL; School of Life Sciences, University of Nottingham Medical School, Nottingham NG72UH, United Kingdom; and.
  • van der Oost J; Laboratory of Microbiology, Wageningen University, 6703 HB, Wageningen, The Netherlands.
  • Kim JS; Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea; Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea; jsunkim@chonnam.ac.kr.
Proc Natl Acad Sci U S A ; 111(46): 16359-64, 2014 Nov 18.
Article em En | MEDLINE | ID: mdl-25368186
ABSTRACT
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Proteínas de Bactérias / DNA Bacteriano / DNA Helicases / Sequências Repetitivas Dispersas / Desoxirribonucleases / Proteínas Associadas a CRISPR / Sistemas CRISPR-Cas Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Proteínas de Bactérias / DNA Bacteriano / DNA Helicases / Sequências Repetitivas Dispersas / Desoxirribonucleases / Proteínas Associadas a CRISPR / Sistemas CRISPR-Cas Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article