Your browser doesn't support javascript.
loading
Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity.
Yoshida, Hiroki; Watanabe, Hideaki; Ishida, Akiko; Watanabe, Wataru; Narumi, Keiko; Atsumi, Toshiyuki; Sugita, Chihiro; Kurokawa, Masahiko.
Afiliação
  • Yoshida H; Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan. Electronic address: h-yoshida@phoenix.ac.jp.
  • Watanabe H; Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Ishida A; Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Watanabe W; Department of Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Narumi K; Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Atsumi T; Department of Pharmacognosy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Sugita C; Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
  • Kurokawa M; Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan. Electronic address: b2mk@phoenix.ac.jp.
Biochem Biophys Res Commun ; 454(1): 95-101, 2014 Nov 07.
Article em En | MEDLINE | ID: mdl-25450363
Obese adipose tissue is characterized by increased macrophage infiltration, which results in chronic inflammation in adipose tissue and leads to obesity-related diseases such as type 2 diabetes mellitus and atherosclerosis. The regulation of macrophage infiltration into adipose tissue is an important strategy for preventing and treating obesity-related diseases. In this study, we report that naringenin, a citrus flavonoid, suppressed macrophage infiltration into adipose tissue induced by short-term (14 days) feeding of a high-fat diet in mice; although naringenin did not show any differences in high-fat diet-induced changes of serum biochemical parameters in this short administration period. Naringenin suppressed monocyte chemoattractant protein-1 (MCP-1) in adipose tissue, and this effect was mediated in part through inhibition of c-Jun NH2-terminal kinase pathway. Naringenin also inhibited MCP-1 expression in adipocytes, macrophages, and a co-culture of adipocytes and macrophages. Our results suggest a mechanism by which daily consumption of naringenin may exhibit preventive effects on obesity-related diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tecido Adiposo / Flavanonas / Dieta Hiperlipídica / Macrófagos / Obesidade Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tecido Adiposo / Flavanonas / Dieta Hiperlipídica / Macrófagos / Obesidade Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article