Your browser doesn't support javascript.
loading
Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions.
Millot, M; Dubrovinskaia, N; Cernok, A; Blaha, S; Dubrovinsky, L; Braun, D G; Celliers, P M; Collins, G W; Eggert, J H; Jeanloz, R.
Afiliação
  • Millot M; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. University of California Berkeley, Berkeley, CA 94720, USA. millot1@llnl.gov.
  • Dubrovinskaia N; Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany.
  • Cernok A; Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
  • Blaha S; Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
  • Dubrovinsky L; Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
  • Braun DG; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  • Celliers PM; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  • Collins GW; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  • Eggert JH; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  • Jeanloz R; University of California Berkeley, Berkeley, CA 94720, USA.
Science ; 347(6220): 418-20, 2015 Jan 23.
Article em En | MEDLINE | ID: mdl-25613887
Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article