Your browser doesn't support javascript.
loading
Organometallic dimers: application to work-function reduction of conducting oxides.
Giordano, Anthony J; Pulvirenti, Federico; Khan, Talha M; Fuentes-Hernandez, Canek; Moudgil, Karttikay; Delcamp, Jared H; Kippelen, Bernard; Barlow, Stephen; Marder, Seth R.
Afiliação
  • Giordano AJ; School of Chemistry and Biochemistry and ‡School of Electrical and Computer Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States.
ACS Appl Mater Interfaces ; 7(7): 4320-6, 2015 Feb 25.
Article em En | MEDLINE | ID: mdl-25685873
ABSTRACT
The dimers of pentamethyliridocene and ruthenium pentamethylcyclopentadienyl mesitylene, (IrCp*Cp)2 and (RuCp*mes)2, respectively, are shown here to be effective solution-processable reagents for lowering the work functions of electrode materials; this approach is compared to the use of solution-deposited films of ethoxylated poly(ethylenimine) (PEIE). The work functions of indium tin oxide (ITO), zinc oxide, and gold electrodes can be reduced to 3.3-3.4 eV by immersion in a toluene solution of (IrCp*Cp)2; these values are similar to those that can be obtained by spin-coating a thin layer of PEIE onto the electrodes. The work-function reductions achieved using (IrCp*Cp)2 are primarily attributable to the interface dipoles associated with the formation of submonolayers of IrCp*Cp(+) cations on negatively charged substrates, which in turn result from redox reactions between the dimer and the electrode. The electrical properties of C60 diodes with dimer-modified ITO cathodes are similar to those of analogous devices with PEIE-modified ITO cathodes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article