The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo.
Cell Rep
; 10(8): 1269-79, 2015 Mar 03.
Article
em En
| MEDLINE
| ID: mdl-25732818
Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca(2+)], which control aerobic metabolism, cell death, and survival pathways. We investigated in vivo the effects of mitochondrial Ca(2+) homeostasis in skeletal muscle function and trophism by overexpressing or silencing the mitochondrial calcium uniporter (MCU). The results demonstrate that in both developing and adult muscles, MCU-dependent mitochondrial Ca(2+) uptake has a marked trophic effect that does not depend on aerobic control but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-Akt/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca(2+)-dependent organelle-to-nucleus signaling route that links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Canais de Cálcio
/
Cálcio
/
Músculo Esquelético
/
Mitocôndrias
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article