Your browser doesn't support javascript.
loading
Simultaneous multichannel signal transfers via chaos in a recurrent neural network.
Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Furumai, Noriyuki; Nara, Shigetoshi.
Afiliação
  • Soma K; Department of Electrical and Electronic Engineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
Neural Comput ; 27(5): 1083-101, 2015 May.
Article em En | MEDLINE | ID: mdl-25734496
We propose neural network model that demonstrates the phenomenon of signal transfer between separated neuron groups via other chaotic neurons that show no apparent correlations with the input signal. The model is a recurrent neural network in which it is supposed that synchronous behavior between small groups of input and output neurons has been learned as fragments of high-dimensional memory patterns, and depletion of neural connections results in chaotic wandering dynamics. Computer experiments show that when a strong oscillatory signal is applied to an input group in the chaotic regime, the signal is successfully transferred to the corresponding output group, although no correlation is observed between the input signal and the intermediary neurons. Signal transfer is also observed when multiple signals are applied simultaneously to separate input groups belonging to different memory attractors. In this sense simultaneous multichannel communications are realized, and the chaotic neural dynamics acts as a signal transfer medium in which the signal appears to be hidden.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article