Your browser doesn't support javascript.
loading
BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging.
Guitart-Masip, Marc; Salami, Alireza; Garrett, Douglas; Rieckmann, Anna; Lindenberger, Ulman; Bäckman, Lars.
Afiliação
  • Guitart-Masip M; Aging Research Center, Karolinska Institute, SE-113 30 Stockholm, Sweden.
  • Salami A; Wellcome Trust Center for Neuroimaging, University College London, WC1N 3BG London, UK.
  • Garrett D; Aging Research Center, Karolinska Institute, SE-113 30 Stockholm, Sweden.
  • Rieckmann A; Umeå Center for Functional Brain Imaging, S-90187 Umeå, Sweden.
  • Lindenberger U; Max Plank Institute for Human Development, 14195 Berlin, Germany.
  • Bäckman L; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Cereb Cortex ; 26(5): 2074-2083, 2016 May.
Article em En | MEDLINE | ID: mdl-25750252
ABSTRACT
Dopamine (DA) losses are associated with various aging-related cognitive deficits. Typically, higher moment-to-moment brain signal variability in large-scale patterns of voxels in neocortical regions is linked to better cognitive performance and younger adult age, yet the physiological mechanisms regulating brain signal variability are unknown. We explored the relationship among adult age, DA availability, and blood oxygen level-dependent (BOLD) signal variability, while younger and older participants performed a spatial working memory (SWM) task. We quantified striatal and extrastriatal DA D1 receptor density with [(11)C]SCH23390 and positron emission tomography in all participants. We found that BOLD variability in a neocortical region was negatively related to age and positively related to SWM performance. In contrast, BOLD variability in subcortical regions and bilateral hippocampus was positively related to age and slower responses, and negatively related to D1 density in caudate and dorsolateral prefrontal cortex. Furthermore, BOLD variability in neocortical regions was positively associated with task-related disengagement of the default-mode network, a network whose activation needs to be suppressed for efficient SWM processing. Our results show that age-related DA losses contribute to changes in brain signal variability in subcortical regions and suggest a potential mechanism, by which neocortical BOLD variability supports cognitive performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Receptores de Dopamina D1 / Envelhecimento Cognitivo Limite: Adult / Aged / Female / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Receptores de Dopamina D1 / Envelhecimento Cognitivo Limite: Adult / Aged / Female / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article