Your browser doesn't support javascript.
loading
Assessment of long-range corrected and conventional DFT functional for the prediction of second--order NLO properties and other molecular properties of N-(2-cyanoethyl)-N-butylaniline--a vibrational spectroscopy study.
Anitha, K; Balachandran, V.
Afiliação
  • Anitha K; Department of Physics, Bharathidasan University Constituent College, Lalgudi, Tiruchirapalli 621601, Tamil Nadu, India.
  • Balachandran V; Centre for Research, Department of Physics, A A Government Arts College, Musiri, Tiruchirapalli 621211, Tamil Nadu, India. Electronic address: brsbala@rediffmail.com.
Article em En | MEDLINE | ID: mdl-25813164
ABSTRACT
Vibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the N-(2-cyanoethyl)-N-butylaniline. The geometry, structural properties, intermolecular hydrogen bond, and harmonic vibrational frequencies of the title molecule have been investigated with the help of DFT (B3LYP) and LC-DFT (CAM-B3LYP) method. Molecular electrostatic potential (MEP) have been performed. The various intramolecular interactions have been exposed by natural bond orbital analysis. The distribution of atomic charges and bending of natural hybrid orbitals also reflect the presence of intramolecular hydrogen bonding. Global reactivity and local reactivity descriptors of the title molecule have been calculated. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicated the electron transport in the molecule and thereby NLO activity. The effect of solvent on second-order NLO properties has been studied using polarized continuum model (PCM) in the tetrahydrofuran (THF) solution. The solvent leads to a slight enhancement of the NLO responses for the studied complexes relevant to their NLO responses in gas phase. The electronic absorption spectra were investigated by the TDDFT methods. The frequency-dependent first hyperpolarizabilities of the N-(2-cyanoethyl)-N-butylaniline were also evaluated. The (1)H and (13)C NMR chemical shifts have been calculated by gauge-indepedent atomic orbital (GIAO) method with B3LYP/6-311++G(d, p) approach.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Compostos de Anilina / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Compostos de Anilina / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article