Your browser doesn't support javascript.
loading
A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.
Afiliação
  • Chakraborty S; Mechanobiology Institute, National University of Singapore, Singapore.
  • Mizusaki H; Mechanobiology Institute, National University of Singapore, Singapore.
  • Kenney LJ; Mechanobiology Institute, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America; Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, Illinois, United States of America.
PLoS Biol ; 13(4): e1002116, 2015 Apr.
Article em En | MEDLINE | ID: mdl-25875623
In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonella / Proteínas de Bactérias / Ácidos / DNA Bacteriano / Técnicas Biossensoriais / Transferência Ressonante de Energia de Fluorescência / Macrófagos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonella / Proteínas de Bactérias / Ácidos / DNA Bacteriano / Técnicas Biossensoriais / Transferência Ressonante de Energia de Fluorescência / Macrófagos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article