Your browser doesn't support javascript.
loading
Changes in Nicotinic Neurotransmission during Enteric Nervous System Development.
Foong, Jaime Pei Pei; Hirst, Caroline S; Hao, Marlene M; McKeown, Sonja J; Boesmans, Werend; Young, Heather M; Bornstein, Joel C; Vanden Berghe, Pieter.
Afiliação
  • Foong JP; Departments of Physiology and.
  • Hirst CS; Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia and.
  • Hao MM; Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, 3000 Leuven, Belgium.
  • McKeown SJ; Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia and.
  • Boesmans W; Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, 3000 Leuven, Belgium.
  • Young HM; Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia and.
  • Bornstein JC; Departments of Physiology and.
  • Vanden Berghe P; Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, 3000 Leuven, Belgium Pieter.VandenBerghe@med.kuleuven.be.
J Neurosci ; 35(18): 7106-15, 2015 May 06.
Article em En | MEDLINE | ID: mdl-25948261
ABSTRACT
Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, ß2, and ß4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and ß4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3ß4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3ß4 antagonist, antagonists to α3ß2 and α4ß2 also significantly reduced responses by P10-11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Sistema Nervoso Entérico / Transmissão Sináptica Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Sistema Nervoso Entérico / Transmissão Sináptica Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2015 Tipo de documento: Article