Your browser doesn't support javascript.
loading
Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections.
Gadsby, N J; McHugh, M P; Russell, C D; Mark, H; Conway Morris, A; Laurenson, I F; Hill, A T; Templeton, K E.
Afiliação
  • Gadsby NJ; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK. Electronic address: naomi.gadsby@luht.scot.nhs.uk.
  • McHugh MP; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
  • Russell CD; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
  • Mark H; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
  • Conway Morris A; Department of Anaesthesia, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
  • Laurenson IF; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
  • Hill AT; Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
  • Templeton KE; Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
Clin Microbiol Infect ; 21(8): 788.e1-788.e13, 2015 Aug.
Article em En | MEDLINE | ID: mdl-25980353
The frequent lack of a positive and timely microbiological diagnosis in patients with lower respiratory tract infection (LRTI) is an important obstacle to antimicrobial stewardship. Patients are typically prescribed broad-spectrum empirical antibiotics while microbiology results are awaited, but, because these are often slow, negative, or inconclusive, de-escalation to narrow-spectrum agents rarely occurs in clinical practice. The aim of this study was to develop and evaluate two multiplex real-time PCR assays for the sensitive detection and accurate quantification of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We found that all eight bacterial targets could be reliably quantified from sputum specimens down to a concentration of 100 CFUs/reaction (8333 CFUs/mL). Furthermore, all 249 positive control isolates were correctly detected with our assay, demonstrating effectiveness on both reference strains and local clinical isolates. The specificity was 98% on a panel of nearly 100 negative control isolates. Bacterial load was quantified accurately when three bacterial targets were present in mixtures of varying concentrations, mimicking likely clinical scenarios in LRTI. Concordance with culture was 100% for culture-positive sputum specimens, and 90% for bronchoalveolar lavage fluid specimens, and additional culture-negative bacterial infections were detected and quantified. In conclusion, a quantitative molecular test for eight key bacterial causes of LRTI has the potential to provide a more sensitive decision-making tool, closer to the time-point of patient admission than current standard methods. This should facilitate de-escalation from broad-spectrum to narrow-spectrum antibiotics, substantially improving patient management and supporting efforts to curtail inappropriate antibiotic use.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Infecções Bacterianas / Broncopneumonia / DNA Bacteriano / Técnicas de Diagnóstico Molecular / Reação em Cadeia da Polimerase Multiplex / Reação em Cadeia da Polimerase em Tempo Real Tipo de estudo: Diagnostic_studies / Evaluation_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Infecções Bacterianas / Broncopneumonia / DNA Bacteriano / Técnicas de Diagnóstico Molecular / Reação em Cadeia da Polimerase Multiplex / Reação em Cadeia da Polimerase em Tempo Real Tipo de estudo: Diagnostic_studies / Evaluation_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article