Your browser doesn't support javascript.
loading
Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress.
Ke, Qingbo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Kwak, Sang-Soo.
Afiliação
  • Ke Q; Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
  • Wang Z; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
  • Ji CY; Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
  • Jeong JC; Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
  • Lee HS; Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
  • Li H; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
  • Xu B; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
  • Deng X; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
  • Kwak SS; Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea. Electronic address: sskw
Plant Physiol Biochem ; 94: 19-27, 2015 Sep.
Article em En | MEDLINE | ID: mdl-25980973
ABSTRACT
YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Arabidopsis / Proteínas de Arabidopsis / Populus / Oxigenases de Função Mista / Ácidos Indolacéticos Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Arabidopsis / Proteínas de Arabidopsis / Populus / Oxigenases de Função Mista / Ácidos Indolacéticos Idioma: En Ano de publicação: 2015 Tipo de documento: Article