Your browser doesn't support javascript.
loading
A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum.
Ukaegbu, Uchechi E; Zhang, Xu; Heinberg, Adina R; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.
Afiliação
  • Ukaegbu UE; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America.
  • Zhang X; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America; Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Xi An Da Lu, Changchun, China.
  • Heinberg AR; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America.
  • Wele M; University of Sciences Techniques and Technologies of Bamako, Bamako, Mali.
  • Chen Q; Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Xi An Da Lu, Changchun, China.
  • Deitsch KW; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America.
PLoS Genet ; 11(5): e1005234, 2015 May.
Article em En | MEDLINE | ID: mdl-25993442
ABSTRACT
Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent "true" switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent "default" switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation in Plasmodium falciparum.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Proteínas de Protozoários / Evasão da Resposta Imune / Antígenos de Protozoários Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Proteínas de Protozoários / Evasão da Resposta Imune / Antígenos de Protozoários Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article