Your browser doesn't support javascript.
loading
Probing the Hydrogen-Bonded Water Network at the Active Site of a Water Oxidation Catalyst: [Ru(bpy)(tpy)(H2O)](2+)·(H2O)(0-4).
Duffy, Erin M; Marsh, Brett M; Garand, Etienne.
Afiliação
  • Duffy EM; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
  • Marsh BM; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
  • Garand E; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
J Phys Chem A ; 119(24): 6326-32, 2015 Jun 18.
Article em En | MEDLINE | ID: mdl-26000740
ABSTRACT
The infrared spectra of gas-phase mass-selected [Ru(bpy)(tpy)(H2O)](2+)·(H2O)(0-4) clusters (bpy = 2,2'-bipyridine; tpy = 2,2'6,2″-terpyridine) in the OH stretching region are reported. These species are formed by bringing the homogeneous water oxidation catalyst [Ru(bpy)(tpy)(H2O](2+) from solution into the gas phase via electrospray ionization (ESI) and reconstructing the water network at the active site by condensing additional water onto the complex in a cryogenic ion trap. Infrared predissociation spectroscopy is used to probe the structure of these clusters via their distinctive OH stretch frequencies, which are sensitive to the shape and strength of the local hydrogen-bonding network. The analysis of the spectra, aided by electronic structure calculations, highlights the formation of strong hydrogen bonds between the aqua ligand and the solvating water molecules in the first solvation shell. These interactions are found to propagate through the subsequent solvation shells and lead to the stabilization of asymmetric solvation motifs. Electronic structure calculations show that these strong hydrogen bonds are promoted by charge transfer from the H atom of the aqua ligand to the Ru-OH2 bond.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article