Your browser doesn't support javascript.
loading
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong.
Afiliação
  • Zhang Z; Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN, 46556, USA. ZhiyongZhang@nd.edu.
Behav Res Methods ; 48(2): 427-44, 2016 06.
Article em En | MEDLINE | ID: mdl-26019004
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenvolvimento Infantil / Teorema de Bayes Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Child, preschool / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenvolvimento Infantil / Teorema de Bayes Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Child, preschool / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article