Your browser doesn't support javascript.
loading
Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches.
Bénard, Magalie; Schapman, Damien; Lebon, Alexis; Monterroso, Baptiste; Bellenger, Marine; Le Foll, Frank; Pasquier, Jennifer; Vaudry, Hubert; Vaudry, David; Galas, Ludovic.
Afiliação
  • Bénard M; Cell imaging platform of Normandy (PRIMACEN), Infrastructure en Biologie, Santé et Agronomie (IBiSA), Institut National de la Santé et de la Recherche Médicale (Inserm), Mont-Saint-Aignan, France.
  • Schapman D; Normandie University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
  • Lebon A; Cell imaging platform of Normandy (PRIMACEN), Infrastructure en Biologie, Santé et Agronomie (IBiSA), Institut National de la Santé et de la Recherche Médicale (Inserm), Mont-Saint-Aignan, France.
  • Monterroso B; Normandie University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
  • Bellenger M; Cell imaging platform of Normandy (PRIMACEN), Infrastructure en Biologie, Santé et Agronomie (IBiSA), Institut National de la Santé et de la Recherche Médicale (Inserm), Mont-Saint-Aignan, France.
  • Le Foll F; Normandie University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
  • Pasquier J; Cell imaging platform of Normandy (PRIMACEN), Infrastructure en Biologie, Santé et Agronomie (IBiSA), Institut National de la Santé et de la Recherche Médicale (Inserm), Mont-Saint-Aignan, France.
  • Vaudry H; Normandie University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
  • Vaudry D; Cell imaging platform of Normandy (PRIMACEN), Infrastructure en Biologie, Santé et Agronomie (IBiSA), Institut National de la Santé et de la Recherche Médicale (Inserm), Mont-Saint-Aignan, France.
  • Galas L; Normandie University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
Biol Cell ; 107(11): 419-25, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26094971
ABSTRACT
BACKGROUND INFORMATION Tunneling nanotubes (TnTs) are thin plasma membrane bridges mediating transfers of materials and signals between cells. Heterogeneity of heterocellular and homocellular TnTs is largely described but ultrafine imaging of these light-sensitive floating nanometric structures represents a real challenge in microscopy. We propose here imaging strategies designed to dissect structural and dynamic aspects of TnT formation and function in fixed or living PC12 cells.

RESULTS:

Through time-gated Continuous Wave STimulated Emission Depletion (gCW STED) nanoscopy associated with deconvolution, we provided nanoscale details of membrane and cytoskeleton organisations in two subtypes of TnTs, namely type 1 TnT (TnT1) and type 2 TnT (TnT2). In fixed PC12 cells, TnT1 (length, several tens of micrometres; diameter, 100-650 nm) exhibited a large trumpet-shaped origin, a clear cytosolic tunnel and different bud-shaped connections from closed-ended to open-ended tips. TnT1 contained both actin and tubulin. TnT2 (length, max 20 µm, diameter, 70-200 nm) only contained actin without clear cytosolic tunnel. In living PC12 cells, we observed through gCW STED additional details, unrevealed so far, including a filament spindle emerging from an organising centre at the origin of TnT1 and branched or bulbous attachments of TnT2. However, the power of depletion laser in STED nanoscopy was deleterious for TnTs and prolonged time-lapse experiments were almost prohibited. By circumventing the hazard of photoxicity, we were able to monitor dynamics of bud-shaped tips and intercellular transfer of wheat germ agglutinin labelled cellular elements through time-gated confocal microscopy.

CONCLUSIONS:

Our work identified new structural characteristics of two subtypes of TnTs in PC12 cells as well as dynamics of formation and transfer through complementary imaging methods combined with image processing. Therefore, we could achieve maximum lateral resolution and sample preservation during acquisitions to reveal new insights into TnT studies.

SIGNIFICANCE:

Due to large disparity of TnT-like structures in neuronal, immune, cancer or epithelial cells, high- and superresolution approaches can be utilised for full characterisation of these yet poorly understood routes of cell-to-cell communication.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Microscopia Confocal / Extensões da Superfície Celular / Imagem com Lapso de Tempo Tipo de estudo: Evaluation_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Microscopia Confocal / Extensões da Superfície Celular / Imagem com Lapso de Tempo Tipo de estudo: Evaluation_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article