Your browser doesn't support javascript.
loading
Flow-Driven Rapid Vesicle Fusion via Vortex Trapping.
Shin, Sangwoo; Ault, Jesse T; Stone, Howard A.
Afiliação
  • Shin S; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.
  • Ault JT; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.
  • Stone HA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Langmuir ; 31(26): 7178-82, 2015 Jul 07.
Article em En | MEDLINE | ID: mdl-26098933
ABSTRACT
Fusion between suspended lipid vesicles is difficult to achieve without membrane proteins or ions because the vesicles have extremely low equilibrium membrane tension and high poration energy. Nonetheless, vesicle fusion in the absence of mediators can also be achieved by mechanical forcing that is strong enough to induce membrane poration. Here, we employ a strong fluid shear stress to achieve vesicle fusion. By utilizing a unique vortex formation phenomenon in branched channels as a platform for capturing, stressing, and fusing the lipid vesicles, we directly visualize using high-speed imaging the vesicle fusion events, induced solely by shear, on the time scale of submilliseconds. We show that a large vesicle with a size of up to ∼10 µm can be achieved by the fusion of nanoscale vesicles. This technique has the potential to be utilized as a fast and simple way to produce giant unilamellar vesicles and to serve as a platform for visualizing vesicle interactions and fusions in the presence of shear.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lipossomas Unilamelares / Fenômenos Mecânicos / Hidrodinâmica Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lipossomas Unilamelares / Fenômenos Mecânicos / Hidrodinâmica Idioma: En Ano de publicação: 2015 Tipo de documento: Article