Your browser doesn't support javascript.
loading
A Universal Positive-Negative Selection System for Gene Targeting in Plants Combining an Antibiotic Resistance Gene and Its Antisense RNA.
Nishizawa-Yokoi, Ayako; Nonaka, Satoko; Osakabe, Keishi; Saika, Hiroaki; Toki, Seiichi.
Afiliação
  • Nishizawa-Yokoi A; Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan (A.N.-Y., S.N., K.O., H.S., S.T.); Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); and Kihara Institute for Bio
  • Nonaka S; Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan (A.N.-Y., S.N., K.O., H.S., S.T.); Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); and Kihara Institute for Bio
  • Osakabe K; Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan (A.N.-Y., S.N., K.O., H.S., S.T.); Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); and Kihara Institute for Bio
  • Saika H; Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan (A.N.-Y., S.N., K.O., H.S., S.T.); Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); and Kihara Institute for Bio
  • Toki S; Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan (A.N.-Y., S.N., K.O., H.S., S.T.); Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); and Kihara Institute for Bio
Plant Physiol ; 169(1): 362-70, 2015 Sep.
Article em En | MEDLINE | ID: mdl-26143254
ABSTRACT
Gene targeting (GT) is a useful technology for accurate genome engineering in plants. A reproducible approach based on a positive-negative selection system using hygromycin resistance and the diphtheria toxin A subunit gene as positive and negative selection markers, respectively, is now available. However, to date, this selection system has been applied exclusively in rice (Oryza sativa). To establish a universally applicable positive-negative GT system in plants, we designed a selection system using a combination of neomycin phosphotransferaseII (nptII) and an antisense nptII construct. The concomitant transcription of both sense and antisense nptII suppresses significantly the level of expression of the sense nptII gene, and transgenic calli and plants become sensitive to the antibiotic geneticin. In addition, we were able to utilize the sense nptII gene as a positive selection marker and the antisense nptII construct as a negative selection marker for knockout of the endogenous rice genes Waxy and 33-kD globulin through GT, although negative selection with this system is relatively less efficient compared with diphtheria toxin A subunit. The approach developed here, with some additional improvements, could be applied as a universal selection system for the enrichment of GT cells in several plant species.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência Microbiana a Medicamentos / RNA Antissenso / Genes de Plantas / Marcação de Genes Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência Microbiana a Medicamentos / RNA Antissenso / Genes de Plantas / Marcação de Genes Idioma: En Ano de publicação: 2015 Tipo de documento: Article