Your browser doesn't support javascript.
loading
Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target.
Chadwick, Jessica A; Hauck, J Spencer; Lowe, Jeovanna; Shaw, Jeremiah J; Guttridge, Denis C; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A.
Afiliação
  • Chadwick JA; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Hauck JS; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Lowe J; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Shaw JJ; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Guttridge DC; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Gomez-Sanchez CE; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Gomez-Sanchez EP; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
  • Rafael-Fortney JA; *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology an
FASEB J ; 29(11): 4544-54, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26178166
ABSTRACT
Early treatment with heart failure drugs lisinopril and spironolactone improves skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. The angiotensin converting enzyme inhibitor lisinopril and mineralocorticoid receptor (MR) antagonist spironolactone indirectly and directly target MR. The presence and function of MR in skeletal muscle have not been explored. MR mRNA and protein are present in all tested skeletal muscles from both wild-type mice and DMD mouse models. MR expression is cell autonomous in both undifferentiated myoblasts and differentiated myotubes from mouse and human skeletal muscle cultures. To test for MR function in skeletal muscle, global gene expression analysis was conducted on human myotubes treated with MR agonist (aldosterone; EC50 1.3 nM) or antagonist (spironolactone; IC50 1.6 nM), and 53 gene expression differences were identified. Five differences were conserved in quadriceps muscles from dystrophic mice treated with spironolactone plus lisinopril (IC50 0.1 nM) compared with untreated controls. Genes down-regulated more than 2-fold by MR antagonism included FOS, ANKRD1, and GADD45B, with known roles in skeletal muscle, in addition to NPR3 and SERPINA3, bona fide targets of MR in other tissues. MR is a novel drug target in skeletal muscle and use of clinically safe antagonists may be beneficial for muscle diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espironolactona / Lisinopril / Fibras Musculares Esqueléticas / Receptores de Melanocortina / Aldosterona / Proteínas Musculares Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espironolactona / Lisinopril / Fibras Musculares Esqueléticas / Receptores de Melanocortina / Aldosterona / Proteínas Musculares Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article