Your browser doesn't support javascript.
loading
The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features.
Luthringer, Rémy; Lipinska, Agnieszka P; Roze, Denis; Cormier, Alexandre; Macaisne, Nicolas; Peters, Akira F; Cock, J Mark; Coelho, Susana M.
Afiliação
  • Luthringer R; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France.
  • Lipinska AP; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France.
  • Roze D; UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France.
  • Cormier A; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France.
  • Macaisne N; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France.
  • Peters AF; Bezhin Rosko, Santec, France.
  • Cock JM; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France.
  • Coelho SM; Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France coelho@sb-roscoff.fr.
Mol Biol Evol ; 32(11): 2973-85, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26248564
ABSTRACT
The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromossomos Sexuais / Phaeophyceae Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromossomos Sexuais / Phaeophyceae Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article