Your browser doesn't support javascript.
loading
Integrating Tumor and Stromal Gene Expression Signatures With Clinical Indices for Survival Stratification of Early-Stage Non-Small Cell Lung Cancer.
Gentles, Andrew J; Bratman, Scott V; Lee, Luke J; Harris, Jeremy P; Feng, Weiguo; Nair, Ramesh V; Shultz, David B; Nair, Viswam S; Hoang, Chuong D; West, Robert B; Plevritis, Sylvia K; Alizadeh, Ash A; Diehn, Maximilian.
Afiliação
  • Gentles AJ; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Bratman SV; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Lee LJ; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Harris JP; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Feng W; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Nair RV; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Shultz DB; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Nair VS; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Hoang CD; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • West RB; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Plevritis SK; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Alizadeh AA; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
  • Diehn M; Department of Radiology (AJG, JPH, RVN, SKP), Department of Radiation Oncology (SVB, DBS, MD), Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine (LJL, WF, MD), Department of Medicine Division of Pulmonary and Critical Care Medicine (VSN), Department of Cardiothoracic Sur
J Natl Cancer Inst ; 107(10)2015 Oct.
Article em En | MEDLINE | ID: mdl-26286589
BACKGROUND: Accurate survival stratification in early-stage non-small cell lung cancer (NSCLC) could inform the use of adjuvant therapy. We developed a clinically implementable mortality risk score incorporating distinct tumor microenvironmental gene expression signatures and clinical variables. METHODS: Gene expression profiles from 1106 nonsquamous NSCLCs were used for generation and internal validation of a nine-gene molecular prognostic index (MPI). A quantitative polymerase chain reaction (qPCR) assay was developed and validated on an independent cohort of formalin-fixed paraffin-embedded (FFPE) tissues (n = 98). A prognostic score using clinical variables was generated using Surveillance, Epidemiology, and End Results data and combined with the MPI. All statistical tests for survival were two-sided. RESULTS: The MPI stratified stage I patients into prognostic categories in three microarray and one FFPE qPCR validation cohorts (HR = 2.99, 95% CI = 1.55 to 5.76, P < .001 in stage IA patients of the largest microarray validation cohort; HR = 3.95, 95% CI = 1.24 to 12.64, P = .01 in stage IA of the qPCR cohort). Prognostic genes were expressed in distinct tumor cell subpopulations, and genes implicated in proliferation and stem cells portended poor outcomes, while genes involved in normal lung differentiation and immune infiltration were associated with superior survival. Integrating the MPI with clinical variables conferred greatest prognostic power (HR = 3.43, 95% CI = 2.18 to 5.39, P < .001 in stage I patients of the largest microarray cohort; HR = 3.99, 95% CI = 1.67 to 9.56, P < .001 in stage I patients of the qPCR cohort). Finally, the MPI was prognostic irrespective of somatic alterations in EGFR, KRAS, TP53, and ALK. CONCLUSION: The MPI incorporates genes expressed in the tumor and its microenvironment and can be implemented clinically using qPCR assays on FFPE tissues. A composite model integrating the MPI with clinical variables provides the most accurate risk stratification.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores Tumorais / Carcinoma Pulmonar de Células não Pequenas / Transcriptoma / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies País/Região como assunto: America do norte Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores Tumorais / Carcinoma Pulmonar de Células não Pequenas / Transcriptoma / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies País/Região como assunto: America do norte Idioma: En Ano de publicação: 2015 Tipo de documento: Article