Your browser doesn't support javascript.
loading
Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics.
Meli, Valeria; Caltagirone, Claudia; Falchi, Angela M; Hyde, Stephen T; Lippolis, Vito; Monduzzi, Maura; Obiols-Rabasa, Marc; Rosa, Antonella; Schmidt, Judith; Talmon, Yeshayahu; Murgia, Sergio.
Afiliação
  • Hyde ST; Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University , Canberra, A.C.T. 0200, Australia.
  • Obiols-Rabasa M; Division of Physical Chemistry, Department of Chemistry, Lund University , Getingevägen 60, SE-22240 Lund, Sweden.
  • Schmidt J; Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa 3200003, Israel.
  • Talmon Y; Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa 3200003, Israel.
Langmuir ; 31(35): 9566-75, 2015 Sep 08.
Article em En | MEDLINE | ID: mdl-26293620
ABSTRACT
Here, we describe a novel monoolein-based cubosome formulation engineered for possible theranostic applications in oncology. The Docetaxel-loaded nanoparticles were stabilized in water by a mixture of commercial Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer) F108 (PF108) and rhodamine- and folate-conjugated PF108 so that the nanoparticles possess targeting, therapeutic, and imaging properties. Nanoparticles were investigated by DLS, cryo-TEM, and SAXS to confirm their structural features. The fluorescent emission characterization of the proposed formulation indicated that the rhodamine conjugated to the PF108 experiences an environment less polar than water (similar to chloroform), suggesting that the fluorescent fragment is buried within the poly(ethylene oxide) corona surrounding the nanoparticle. Furthermore, these nanoparticles were successfully used to image living HeLa cells and demonstrated a significant short-term (4 h incubation) cytotoxicity effect against these cancer cells. Furthermore, given their analogy as nanocarriers for molecules of pharmaceutical interest and to better stress the singularities of these bicontinuous cubic nanoparticles, we also quantitatively evaluated the differences between cubosomes and multilamellar liposomes in terms of surface area and hydrophobic volume.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias do Colo do Útero / Taxoides / Cristais Líquidos / Nanopartículas / Fluorescência / Nanomedicina Teranóstica / Antineoplásicos Tipo de estudo: Diagnostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias do Colo do Útero / Taxoides / Cristais Líquidos / Nanopartículas / Fluorescência / Nanomedicina Teranóstica / Antineoplásicos Tipo de estudo: Diagnostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article