Your browser doesn't support javascript.
loading
A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics.
Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Álvarez-Martín, Pablo; López, Patricia; Martínez-Álvarez, Noelia; Delley, Michele; Martí, Marc; Varela, Encarna; Suárez, Ana; Antolín, María; Guarner, Francisco; Berger, Bernard; Ruas-Madiedo, Patricia; Margolles, Abelardo.
Afiliação
  • Hidalgo-Cantabrana C; Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA-CSIC), Villaviciosa, Asturias, Spain.
  • Sánchez B; Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA-CSIC), Villaviciosa, Asturias, Spain.
  • Álvarez-Martín P; Human Microbiology, Nestlé Research Center Vers-chez-les-Blanc, Lausanne, Switzerland.
  • López P; Immunology Area, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain.
  • Martínez-Álvarez N; Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA-CSIC), Villaviciosa, Asturias, Spain.
  • Delley M; Human Microbiology, Nestlé Research Center Vers-chez-les-Blanc, Lausanne, Switzerland.
  • Martí M; Surgery Department, University Hospital Vall d'Hebron, Barcelona, Spain.
  • Varela E; Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron, University Hospital Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
  • Suárez A; Immunology Area, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain.
  • Antolín M; Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron, University Hospital Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
  • Guarner F; Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron, University Hospital Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
  • Berger B; Human Microbiology, Nestlé Research Center Vers-chez-les-Blanc, Lausanne, Switzerland.
  • Ruas-Madiedo P; Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA-CSIC), Villaviciosa, Asturias, Spain.
  • Margolles A; Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA-CSIC), Villaviciosa, Asturias, Spain amargolles@ipla.csic.es.
Appl Environ Microbiol ; 81(23): 7960-8, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26362981
Exopolysaccharides (EPS) are extracellular carbohydrate polymers synthesized by a large variety of bacteria. Their physiological functions have been extensively studied, but many of their roles have not yet been elucidated. We have sequenced the genomes of two isogenic strains of Bifidobacterium animalis subsp. lactis that differ in their EPS-producing phenotype. The original strain displays a nonmucoid appearance, and the mutant derived thereof has acquired a mucoid phenotype. The sequence analysis of their genomes revealed a nonsynonymous mutation in the gene Balat_1410, putatively involved in the elongation of the EPS chain. By comparing a strain from which this gene had been deleted with strains containing the wild-type and mutated genes, we were able to show that each strain displays different cell surface characteristics. The mucoid EPS synthesized by the strain harboring the mutation in Balat_1410 provided higher resistance to gastrointestinal conditions and increased the capability for adhesion to human enterocytes. In addition, the cytokine profiles of human peripheral blood mononuclear cells and ex vivo colon tissues suggest that the mucoid strain could have higher anti-inflammatory activity. Our findings provide relevant data on the function of Balat_1410 and reveal that the mucoid phenotype is able to alter some of the most relevant functional properties of the cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Polissacarídeos Bacterianos / Proteínas de Bactérias / Bifidobacterium Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Polissacarídeos Bacterianos / Proteínas de Bactérias / Bifidobacterium Idioma: En Ano de publicação: 2015 Tipo de documento: Article