Your browser doesn't support javascript.
loading
Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties.
Li, Qiucheng; Liu, Mengxi; Zhang, Yanfeng; Liu, Zhongfan.
Afiliação
  • Li Q; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.
  • Liu M; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.
  • Zhang Y; National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Liu Z; Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.
Small ; 12(1): 32-50, 2016 Jan 06.
Article em En | MEDLINE | ID: mdl-26439677
ABSTRACT
Research on in-plane and vertically-stacked heterostructures of graphene and hexagonal boron nitride (h-BN) have attracted intense attentions for energy band engineering and device performance optimization of graphene. In this review article, recent advances in the controlled syntheses, interfacial structures, and electronic properties, as well as novel device constructions of h-BN and graphene heterostructures are highlighted. Firstly, diverse synthesis approaches for in-plane h-BN and graphene (h-BN-G) heterostructures are reviewed, and their applications in nanoelectronics are briefly introduced. Moreover, the interfacial structures and electronic properties of h-BN-G heterojunctions are discussed, and a zigzag type interface is found to preferentially evolve at the linking edge of the two structural analogues. Secondly, several synthetic routes for the vertically-stacked graphene/h-BN (G/h-BN) heterostructures are also reviewed. The role of h-BN as perfect dielectric layers in promoting the device performance of graphene is presented. Finally, future research directions in the synthesis and application of such heterostructures are discussed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article