Your browser doesn't support javascript.
loading
Strong TCR-mediated signals suppress integrated stress responses induced by KDELR1 deficiency in naive T cells.
Kamimura, Daisuke; Arima, Yasunobu; Tsuruoka, Mineko; Jiang, Jing-Jing; Bando, Hidenori; Meng, Jie; Sabharwal, Lavannya; Stofkova, Andrea; Nishikawa, Naoki; Higuchi, Kotaro; Ogura, Hideki; Atsumi, Toru; Murakami, Masaaki.
Afiliação
  • Kamimura D; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Arima Y; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Tsuruoka M; Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
  • Jiang JJ; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Bando H; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Meng J; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Sabharwal L; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Stofkova A; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan.
  • Nishikawa N; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan.
  • Higuchi K; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan.
  • Ogura H; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Atsumi T; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
  • Murakami M; Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WP
Int Immunol ; 28(3): 117-26, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26489882
ABSTRACT
KDEL receptor 1 (KDELR1) regulates integrated stress responses (ISR) to promote naive T-cell survival in vivo. In a mouse line having nonfunctional KDELR1, T-Red (naive T-cell reduced) mice, polyclonal naive T cells show excessive ISR and eventually undergo apoptosis. However, breeding T-Red mice with TCR-transgenic mice bearing relatively high TCR affinity rescued the T-Red phenotype, implying a link between ISR-induced apoptosis and TCR-mediated signaling. Here, we showed that strong TCR stimulation reduces ISR in naive T cells. In mice lacking functional KDELR1, surviving naive T cells expressed significantly higher levels of CD5, a surrogate marker of TCR self-reactivity. In addition, higher TCR affinity/avidity was confirmed using a tetramer dissociation assay on the surviving naive T cells, suggesting that among the naive T-cell repertoire, those that receive relatively stronger TCR-mediated signals via self-antigens survive enhanced ISR. Consistent with this observation, weak TCR stimulation with altered peptide ligands decreased the survival and proliferation of naive T cells, whereas stimulation with ligands having higher affinity had no such effect. These results suggest a novel role of TCR-mediated signals in the attenuation of ISR in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Linfócitos T / Transdução de Sinais / Receptores de Peptídeos / Estresse do Retículo Endoplasmático Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Linfócitos T / Transdução de Sinais / Receptores de Peptídeos / Estresse do Retículo Endoplasmático Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article