Your browser doesn't support javascript.
loading
Fractional Solitons in Excitonic Josephson Junctions.
Hsu, Ya-Fen; Su, Jung-Jung.
Afiliação
  • Hsu YF; Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan.
  • Su JJ; Physics Division, National Center for Theoretical Science, Hsinchu, 30013, Taiwan.
Sci Rep ; 5: 15796, 2015 10 29.
Article em En | MEDLINE | ID: mdl-26511770
ABSTRACT
The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article