Your browser doesn't support javascript.
loading
Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae.
Atias, Nir; Kupiec, Martin; Sharan, Roded.
Afiliação
  • Atias N; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
  • Kupiec M; Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel martin@post.tau.ac.il.
  • Sharan R; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel roded@post.tau.ac.il.
Nucleic Acids Res ; 44(5): e50, 2016 Mar 18.
Article em En | MEDLINE | ID: mdl-26602688
The yeast mutant collections are a fundamental tool in deciphering genomic organization and function. Over the last decade, they have been used for the systematic exploration of ∼6 000 000 double gene mutants, identifying and cataloging genetic interactions among them. Here we studied the extent to which these data are prone to neighboring gene effects (NGEs), a phenomenon by which the deletion of a gene affects the expression of adjacent genes along the genome. Analyzing ∼90,000 negative genetic interactions observed to date, we found that more than 10% of them are incorrectly annotated due to NGEs. We developed a novel algorithm, GINGER, to identify and correct erroneous interaction annotations. We validated the algorithm using a comparative analysis of interactions from Schizosaccharomyces pombe. We further showed that our predictions are significantly more concordant with diverse biological data compared to their mis-annotated counterparts. Our work uncovered about 9500 new genetic interactions in yeast.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Algoritmos / Epistasia Genética / Anotação de Sequência Molecular / Genes Fúngicos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Algoritmos / Epistasia Genética / Anotação de Sequência Molecular / Genes Fúngicos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article