Your browser doesn't support javascript.
loading
Genome-wide association study and biological pathway analysis of the Eimeria maxima response in broilers.
Hamzic, Edin; Buitenhuis, Bart; Hérault, Frédéric; Hawken, Rachel; Abrahamsen, Mitchel S; Servin, Bertrand; Elsen, Jean-Michel; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand.
Afiliação
  • Hamzic E; UMR1313 Animal Genetics and Integrative Biology Unit, AgroParisTech, 16 rue Claude Bernard, 75005, Paris, France. edin.hamzic@jouy.inra.fr.
  • Buitenhuis B; UMR1313 Animal Genetics and Integrative Biology Unit, INRA, Domaine de Vilvert, 78350, Jouy-en-Josas, France. edin.hamzic@jouy.inra.fr.
  • Hérault F; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark. edin.hamzic@jouy.inra.fr.
  • Hawken R; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark. bart.buitenhuis@mbg.au.dk.
  • Abrahamsen MS; UMR1348 Physiology, Environment and Genetics for the Animal and Livestock Systems Unit, INRA, Domaine de la Prise, 35590, Saint Gilles, France. frederic.herault@rennes.inra.fr.
  • Servin B; Cobb-Vantress Inc., Siloam Springs, AR, 72761, USA. rachel.hawken@cobb-vantress.com.
  • Elsen JM; Cobb-Vantress Inc., Siloam Springs, AR, 72761, USA. mitch.abrahamsen@cobb-vantress.com.
  • Pinard-van der Laan MH; UMR1388 Genetics, Physiology and Breeding Systems, INRA, 24 chemin de Borde-Rouge, 31326, Castanet-Tolosan, France. bertrand.servin@toulouse.inra.fr.
  • Bed'Hom B; UMR1388 Genetics, Physiology and Breeding Systems, INRA, 24 chemin de Borde-Rouge, 31326, Castanet-Tolosan, France. jean-michel.elsen@toulouse.inra.fr.
Genet Sel Evol ; 47: 91, 2015 Nov 25.
Article em En | MEDLINE | ID: mdl-26607727
ABSTRACT

BACKGROUND:

Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozoans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respectively. Therefore, the current control programs must be expanded with complementary approaches such as the use of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying response to Eimeria maxima challenge.

RESULTS:

In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value <0.1 distributed across five chromosomes. The highly significant SNPs were associated with body weight gain (three SNPs on GGA5, one SNP on GGA1 and one SNP on GGA3), plasma coloration measured as optical density at wavelengths in the range 465-510 nm (10 SNPs and all on GGA10) and the percentage of ß2-globulin in blood plasma (15 SNPs on GGA1 and one SNP on GGA2). Biological pathways related to metabolic processes, cell proliferation, and primary innate immune processes were among the most frequent significantly enriched biological pathways. Furthermore, the network-based analysis produced two networks of high confidence, with one centered on large tumor suppressor kinase 1 (LATS1) and 2 (LATS2) and the second involving the myosin heavy chain 6 (MYH6).

CONCLUSIONS:

We identified several strong candidate genes and genomic regions associated with traits measured in response to Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological pathways and networks involved in tissue proliferation and repair along with the primary innate immune response may play the most important role during the early stage of Eimeria maxima infection in broilers.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Aves Domésticas / Transdução de Sinais / Galinhas / Coccidiose / Eimeria / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Aves Domésticas / Transdução de Sinais / Galinhas / Coccidiose / Eimeria / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article