Spin-orbit engineering in transition metal dichalcogenide alloy monolayers.
Nat Commun
; 6: 10110, 2015 Dec 14.
Article
em En
| MEDLINE
| ID: mdl-26657930
Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4-300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article