Your browser doesn't support javascript.
loading
Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition.
Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten.
Afiliação
  • Diboun I; Department of Physiology and Biophysics, Weill Cornell Medical College, Qatar Foundation - Education City, PO Box 24144, Doha, Qatar. ild2003@qatar-med.cornell.edu.
  • Mathew S; Department of Physiology and Biophysics, Weill Cornell Medical College, Qatar Foundation - Education City, PO Box 24144, Doha, Qatar. swm2004@qatar-med.cornell.edu.
  • Al-Rayyashi M; Genomics Laboratory, Weill Cornell Medical College, Doha, Qatar. m.alrayyashi@googlemail.com.
  • Elrayess M; Life sciences research division, ADLQ, Doha, Qatar. melrayess@adlqatar.qa.
  • Torres M; Genomics Laboratory, Weill Cornell Medical College, Doha, Qatar. mft2002@qatar-med.cornell.edu.
  • Halama A; Department of Physiology and Biophysics, Weill Cornell Medical College, Qatar Foundation - Education City, PO Box 24144, Doha, Qatar. amh2025@qatar-med.cornell.edu.
  • Méret M; MetaSysX GmbH, Potsdam, Germany. meret@metasysx.eu.
  • Mohney RP; Metabolon, Inc., Durham, USA. RMohney@metabolon.com.
  • Karoly ED; Metabolon, Inc., Durham, USA. EKaroly@metabolon.com.
  • Malek J; Genomics Laboratory, Weill Cornell Medical College, Doha, Qatar. jom2042@qatar-med.cornell.edu.
  • Suhre K; Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar. jom2042@qatar-med.cornell.edu.
BMC Plant Biol ; 15: 291, 2015 Dec 16.
Article em En | MEDLINE | ID: mdl-26674306
BACKGROUND: Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. RESULTS: Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. CONCLUSIONS: These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Metaboloma / Phoeniceae / Frutas Tipo de estudo: Prognostic_studies / Qualitative_research País/Região como assunto: Africa Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Metaboloma / Phoeniceae / Frutas Tipo de estudo: Prognostic_studies / Qualitative_research País/Região como assunto: Africa Idioma: En Ano de publicação: 2015 Tipo de documento: Article