Your browser doesn't support javascript.
loading
Amyloid ß-Protein C-Terminal Fragments: Formation of Cylindrins and ß-Barrels.
Do, Thanh D; LaPointe, Nichole E; Nelson, Rebecca; Krotee, Pascal; Hayden, Eric Y; Ulrich, Brittany; Quan, Sarah; Feinstein, Stuart C; Teplow, David B; Eisenberg, David; Shea, Joan-Emma; Bowers, Michael T.
Afiliação
  • Do TD; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • LaPointe NE; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
  • Nelson R; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • Krotee P; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
  • Hayden EY; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • Ulrich B; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
  • Quan S; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • Feinstein SC; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
  • Teplow DB; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • Eisenberg D; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
  • Shea JE; Department of Chemistry and Biochemistry and ‡Department of Physics, ¶Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States.
  • Bowers MT; Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, and ∥Department of Neurology, David Geffen School of Medicine at UCLA, ∇Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Bra
J Am Chem Soc ; 138(2): 549-57, 2016 Jan 20.
Article em En | MEDLINE | ID: mdl-26700445
ABSTRACT
In order to evaluate potential therapeutic targets for treatment of amyloidoses such as Alzheimer's disease (AD), it is essential to determine the structures of toxic amyloid oligomers. However, for the amyloid ß-protein peptide (Aß), thought to be the seminal neuropathogenetic agent in AD, its fast aggregation kinetics and the rapid equilibrium dynamics among oligomers of different size pose significant experimental challenges. Here we use ion-mobility mass spectrometry, in combination with electron microscopy, atomic force microscopy, and computational modeling, to test the hypothesis that Aß peptides can form oligomeric structures resembling cylindrins and ß-barrels. These structures are hypothesized to cause neuronal injury and death through perturbation of plasma membrane integrity. We show that hexamers of C-terminal Aß fragments, including Aß(24-34), Aß(25-35) and Aß(26-36), have collision cross sections similar to those of cylindrins. We also show that linking two identical fragments head-to-tail using diglycine increases the proportion of cylindrin-sized oligomers. In addition, we find that larger oligomers of these fragments may adopt ß-barrel structures and that ß-barrels can be formed by folding an out-of-register ß-sheet, a common type of structure found in amyloid proteins.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Sanguíneas / Peptídeos beta-Amiloides Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Sanguíneas / Peptídeos beta-Amiloides Idioma: En Ano de publicação: 2016 Tipo de documento: Article