Your browser doesn't support javascript.
loading
FoxO1 Plays an Important Role in Regulating ß-Cell Compensation for Insulin Resistance in Male Mice.
Zhang, Ting; Kim, Dae Hyun; Xiao, Xiangwei; Lee, Sojin; Gong, Zhenwei; Muzumdar, Radhika; Calabuig-Navarro, Virtu; Yamauchi, Jun; Harashima, Hideyoshi; Wang, Rennian; Bottino, Rita; Alvarez-Perez, Juan Carlos; Garcia-Ocaña, Adolfo; Gittes, George; Dong, H Henry.
Afiliação
  • Zhang T; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Kim DH; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Xiao X; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Lee S; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Gong Z; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Muzumdar R; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Calabuig-Navarro V; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Yamauchi J; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Harashima H; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Wang R; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Bottino R; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Alvarez-Perez JC; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Garcia-Ocaña A; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Gittes G; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
  • Dong HH; Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation
Endocrinology ; 157(3): 1055-70, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26727107
ABSTRACT
ß-Cell compensation is an essential mechanism by which ß-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of ß-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of ß-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in ß-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved ß-cell compensation via 3 distinct mechanisms by increasing ß-cell mass, enhancing ß-cell glucose sensing, and augmenting ß-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in ß-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, ß-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased ß-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological ß-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of ß-cell mass and function to overnutrition and obesity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Adaptação Fisiológica / Células Secretoras de Insulina / Fatores de Transcrição Forkhead / Insulina Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Adaptação Fisiológica / Células Secretoras de Insulina / Fatores de Transcrição Forkhead / Insulina Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article