Your browser doesn't support javascript.
loading
Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction.
Liu, Rongrong; Zhang, Haimin; Liu, Shengwen; Zhang, Xian; Wu, Tianxing; Ge, Xiao; Zang, Yipeng; Zhao, Huijun; Wang, Guozhong.
Afiliação
  • Liu R; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn and University of Science and Te
  • Zhang H; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn.
  • Liu S; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn.
  • Zhang X; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn and University of Science and Te
  • Wu T; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn.
  • Ge X; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn and University of Science and Te
  • Zang Y; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn and University of Science and Te
  • Zhao H; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn and Centre for Clean Environment
  • Wang G; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. zhanghm@issp.ac.cn gzhwang@issp.ac.cn.
Phys Chem Chem Phys ; 18(5): 4095-101, 2016 Feb 07.
Article em En | MEDLINE | ID: mdl-26778836
ABSTRACT
Development of cheap, abundant and metal-free N-doped carbon materials as high efficiency oxygen reduction electrocatalysts is crucial for their practical applications in future fuel cell devices. Here, three-dimensional (3D) N-doped porous carbon (NPC) materials have been successfully developed by a simple template-assisted (e.g., SiO2 spheres) high temperature pyrolysis approach using shrimp-shell derived N-doped carbon nanodots (N-CNs) as carbon and nitrogen sources obtained through a facile hydrothermal method. The shrimp-shell derived N-CNs with a product yield of ∼ 5% possess rich surface O- and N-containing functional groups and small nanodot sizes of 1.5-5.0 nm, which are mixed with surface acidification treated SiO2 spheres with an average diameter of ∼ 200 nm in aqueous solution to form a N-CNs@SiO2 composite subjected to a thermal evaporation treatment. The resultant N-CNs@SiO2 composite is further thermally treated in a N2 atmosphere at different pyrolysis temperatures, followed by acid etching, to obtain 3D N-doped porous carbon (NPC) materials. As electrocatalysts for oxygen reduction reaction (ORR) in alkaline media, the experimental results demonstrate that 3D NPC obtained at 800 °C (NPC-800) with a surface area of 360.2 m(2) g(-1) exhibits the best ORR catalytic activity with an onset potential of -0.06 V, a half wave potential of -0.21 V and a large limiting current density of 5.3 mA cm(-2) (at -0.4 V, vs. Ag/AgCl) among all NPC materials investigated, comparable to that of the commercial Pt/C catalyst with an onset potential of -0.03 V, a half wave potential of -0.17 V and a limiting current density of 5.5 mA cm(-2) at -0.4 V. Such a 3D porous carbon ORR electrocatalyst also displays superior durability and high methanol tolerance in alkaline media, apparently better than the commercial Pt/C catalyst. The findings of this work would be valuable for the development of low-cost and abundant N-doped carbon materials from biomass as high performance metal-free electrocatalysts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article