Your browser doesn't support javascript.
loading
In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors.
Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong Nam Phuong; Riedmayr, Lisa Maria; Koch, Mirja Annika; Schulze, Elisabeth; Kohl, Susanne; Borsch, Oliver; Santos-Ferreira, Tiago; Ader, Marius; Michalakis, Stylianos; Biel, Martin.
Afiliação
  • Becirovic E; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Böhm S; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
  • Nguyen ON; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Riedmayr LM; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
  • Koch MA; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Schulze E; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
  • Kohl S; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Borsch O; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
  • Santos-Ferreira T; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Ader M; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
  • Michalakis S; Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany.
  • Biel M; Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany.
PLoS Genet ; 12(1): e1005811, 2016 Jan.
Article em En | MEDLINE | ID: mdl-26796962
Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração Retiniana / Splicing de RNA / Células Fotorreceptoras Retinianas Cones / Periferinas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração Retiniana / Splicing de RNA / Células Fotorreceptoras Retinianas Cones / Periferinas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article