Your browser doesn't support javascript.
loading
Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.
Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P.
Afiliação
  • Allan PK; University of Cambridge , University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.
  • Griffin JM; Gonville and Caius College , Trinity Street, Cambridge, CB2 1TA, U.K.
  • Darwiche A; University of Cambridge , University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.
  • Borkiewicz OJ; Institut Charles Gerhardt Montpellier-UMR 5253 CNRS, ALISTORE European Research Institute (3104 CNRS) , Université Montpellier 2, 34095, Montpellier, France.
  • Wiaderek KM; Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , FR CNRS 3459, 80039 Amiens Cedex, France.
  • Chapman KW; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States.
  • Morris AJ; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States.
  • Chupas PJ; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States.
  • Monconduit L; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge , J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
  • Grey CP; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States.
J Am Chem Soc ; 138(7): 2352-65, 2016 Feb 24.
Article em En | MEDLINE | ID: mdl-26824406
ABSTRACT
Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article