Your browser doesn't support javascript.
loading
Modeling and experimental assessment of a buried Leu-Ile mutation in dengue envelope domain III.
Kulkarni, Manjiri R; Numoto, Nobutaka; Ito, Nobutoshi; Kuroda, Yutaka.
Afiliação
  • Kulkarni MR; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.
  • Numoto N; Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
  • Ito N; Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
  • Kuroda Y; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan. Electronic address: ykuroda@cc.tuat.ac.jp.
Biochem Biophys Res Commun ; 471(1): 163-8, 2016 Feb 26.
Article em En | MEDLINE | ID: mdl-26826384
Envelope protein domain III (ED3) of the dengue virus is important for both antibody binding and host cell interaction. Here, we focused on how a L387I mutation in the protein core could take place in DEN4 ED3, but cannot be accommodated in DEN3 ED3 without destabilizing its structure. To this end, we modeled a DEN4_L387I structure using the Penultimate Rotamer Library and taking the DEN4 ED3 main-chain as a fixed template. We found that three out of seven Ile(387) conformers fit in DEN4 ED3 without introducing the severe atomic clashes that are observed when DEN3 serotype's ED3 is used as a template. A more extensive search using 273 side-chain rotamers of the residues surrounding Ile(387) confirmed this prediction. In order to assess the prediction, we determined the crystal structure of DEN4_L387I at 2 Å resolution. Ile(387) indeed adopted one of the three predicted rotamers. Altogether, this study demonstrates that the effects of single mutations are to a large extent successfully predicted by systematically modeling the side-chain structures of the mutated as well as those of its surrounding residues using fixed main-chain structures and assessing inter-atomic steric clashes. More accurate and reliable predictions require considering sub-angstrom main-chain deformation, which remains a challenging task.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Proteínas do Envelope Viral / Modelos Químicos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Proteínas do Envelope Viral / Modelos Químicos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article