Your browser doesn't support javascript.
loading
A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE ß-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5).
Steidle, Elizabeth A; Chong, Lucy S; Wu, Mingxuan; Crooke, Elliott; Fiedler, Dorothea; Resnick, Adam C; Rolfes, Ronda J.
Afiliação
  • Steidle EA; From the Department of Biology, Georgetown University, Washington, D. C. 20057.
  • Chong LS; the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104.
  • Wu M; the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and.
  • Crooke E; the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057.
  • Fiedler D; the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and.
  • Resnick AC; the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, resnick@email.chop.edu.
  • Rolfes RJ; From the Department of Biology, Georgetown University, Washington, D. C. 20057, rolfesr@georgetown.edu.
J Biol Chem ; 291(13): 6772-83, 2016 Mar 25.
Article em En | MEDLINE | ID: mdl-26828065
ABSTRACT
Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the ß-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas Recombinantes / Regulação Fúngica da Expressão Gênica / Proteínas Tirosina Fosfatases / Proteínas de Saccharomyces cerevisiae / Fosfatos de Inositol Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas Recombinantes / Regulação Fúngica da Expressão Gênica / Proteínas Tirosina Fosfatases / Proteínas de Saccharomyces cerevisiae / Fosfatos de Inositol Idioma: En Ano de publicação: 2016 Tipo de documento: Article