Your browser doesn't support javascript.
loading
Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model.
Qiao, H; Wang, T-y; Yu, Z-f; Han, X-g; Liu, X-q; Wang, Y-g; Fan, Q-m; Qin, A; Tang, T-t.
Afiliação
  • Qiao H; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Wang TY; Shanghai Key Laboratory of Orthopaedic Implants, Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Yu ZF; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Han XG; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Liu XQ; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Wang YG; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Fan QM; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Qin A; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Tang TT; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cell Death Dis ; 7: e2094, 2016 Feb 11.
Article em En | MEDLINE | ID: mdl-26866274
ABSTRACT
The treatment of breast cancer-induced osteolysis remains a challenge in clinical settings. Here, we explored the effect and mechanism of combined treatment with zoledronic acid (ZA) and plumbagin (PL), a widely investigated component derived from Plumbago zeylanica, against breast cancer-induced osteoclastogenesis. We found that the combined treatment with PL and ZA suppressed cell viability of precursor osteoclasts and synergistically inhibited MDA-MB-231-induced osteoclast formation (combination index=0.28) with the abrogation of recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of NF-κB/MAPK (nuclear factor-κB/mitogen-activated protein kinase) pathways. Molecular docking suggested a putative binding area within c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk) protease active sites through the structural mimicking of adenosine phosphate (ANP) by the spatial combination of PL with ZA. A homogeneous time-resolved fluorescence assay further illustrated the direct competitiveness of the dual drugs against ANP docking to phosphorylated JNK/Erk, contributing to the inhibited downstream expression of c-Jun/c-Fos/NFATc-1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1). Then, in vivo testing demonstrated that the combined administration of PL and ZA attenuated breast cancer growth in the bone microenvironment. Additionally, these molecules prevented the destruction of proximal tibia, with significant reduction of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclast cells and potentiation of apoptotic cancer cells, to a greater extent when combined than when the drugs were applied independently. Altogether, the combination treatment with PL and ZA could significantly and synergistically suppress osteoclastogenesis and inhibit tumorigenesis both in vitro and in vivo by simulating the spatial structure of ANP to inhibit competitively phosphorylation of c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteólise / Neoplasias da Mama / Nucleotídeos de Adenina / Protocolos de Quimioterapia Combinada Antineoplásica / Naftoquinonas / Difosfonatos / Imidazóis Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteólise / Neoplasias da Mama / Nucleotídeos de Adenina / Protocolos de Quimioterapia Combinada Antineoplásica / Naftoquinonas / Difosfonatos / Imidazóis Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article