Your browser doesn't support javascript.
loading
Programming Light-Harvesting Efficiency Using DNA Origami.
Hemmig, Elisa A; Creatore, Celestino; Wünsch, Bettina; Hecker, Lisa; Mair, Philip; Parker, M Andy; Emmott, Stephen; Tinnefeld, Philip; Keyser, Ulrich F; Chin, Alex W.
Afiliação
  • Hemmig EA; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
  • Creatore C; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
  • Wünsch B; Institut für Physikalische und Theoretische Chemie, TU Braunschweig , 38106 Braunschweig, Germany.
  • Hecker L; Institut für Physikalische und Theoretische Chemie, TU Braunschweig , 38106 Braunschweig, Germany.
  • Mair P; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
  • Parker MA; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
  • Emmott S; Computational Science Laboratory, Microsoft Research , Cambridge CB1 2FB, United Kingdom.
  • Tinnefeld P; Institut für Physikalische und Theoretische Chemie, TU Braunschweig , 38106 Braunschweig, Germany.
  • Keyser UF; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
  • Chin AW; Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
Nano Lett ; 16(4): 2369-74, 2016 Apr 13.
Article em En | MEDLINE | ID: mdl-26906456
ABSTRACT
The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological "nanomachines" in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Carbocianinas / Processos Fotoquímicos / Luz Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Carbocianinas / Processos Fotoquímicos / Luz Idioma: En Ano de publicação: 2016 Tipo de documento: Article