Your browser doesn't support javascript.
loading
Polymeric protective agents for nanoparticles in drug delivery and targeting.
Mogosanu, George Dan; Grumezescu, Alexandru Mihai; Bejenaru, Cornelia; Bejenaru, Ludovic Everard.
Afiliação
  • Mogosanu GD; Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania.
  • Grumezescu AM; Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania. Electronic address: grumezescu@yahoo.com.
  • Bejenaru C; Department of Vegetal & Animal Biology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania.
  • Bejenaru LE; Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania.
Int J Pharm ; 510(2): 419-29, 2016 Aug 30.
Article em En | MEDLINE | ID: mdl-26972379
ABSTRACT
Surface modification/functionalization of nanoparticles (NPs) using polymeric protective agents is an issue of great importance and actuality for drug delivery and targeting. Improving the blood circulation half-life of surface-protected nanocarriers is closely related to the elimination of main biological barriers and limiting factors (protein absorption and opsonization), due to the phagocytic activity of reticuloendothelial system. For passive or active targeted delivery, in biomedical area, surface-functionalized NPs with tissue-recognition ligands were designed and optimized as a result of modern research techniques. Also, multi-functionalized nanostructures are characterized by enhanced bioavailability, efficacy, targeted localization, active cellular uptake, and low side effects. Surface-protected NPs are obtained from biocompatible, biodegradable and less toxic natural polymers (dextran, ß-cyclodextrin, chitosan, hyaluronic acid, heparin, gelatin) or synthetic polymers, such as poly(lactic acid), poly(lactic-co-glycolic) acid, poly(ε-caprolactone) and poly(alkyl cyanoacrylates). PEGylation is one of the most important functionalization methods providing steric stabilization, long circulating and 'stealth' properties for both polymeric and inorganic-based nanosystems. In addition, for their antimicrobial, antiviral and antitumor effects, cutting-edge researches in the field of pharmaceutical nanobiotechnology highlighted the importance of noble metal (platinum, gold, silver) NPs decorated with biopolymers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Sistemas de Liberação de Medicamentos / Substâncias Protetoras / Nanopartículas Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Sistemas de Liberação de Medicamentos / Substâncias Protetoras / Nanopartículas Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article