Your browser doesn't support javascript.
loading
N-Alkylpyrido[1',2':1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents.
Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D; Venable, Daryl F; Blobaum, Anna L; Byers, Frank W; Daniels, J Scott; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Emmitte, Kyle A.
Afiliação
  • Felts AS; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Rodriguez AL; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Morrison RD; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Venable DF; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Blobaum AL; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Byers FW; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Daniels JS; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Niswender CM; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Jones CK; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Conn PJ; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  • Lindsley CW; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
  • Emmitte KA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Bioorg Med Chem Lett ; 26(8): 1894-900, 2016 Apr 15.
Article em En | MEDLINE | ID: mdl-26988308
ABSTRACT
Selective negative allosteric modulators (NAMs) of each of the group I metabotropic glutamate receptors (mGlu1 and mGlu5) have been well characterized in the literature and offer potential as therapeutics in several disorders of the central nervous system (CNS). Still, compounds that are potent mGlu1/5 NAMs with selectivity versus the other six members of the mGlu family as well as the balance of properties required for use in vivo are lacking. A medicinal chemistry effort centered on the identification of a lead series with the potential of delivering such compounds is described in this Letter. Specifically, a new class of pyrido[1',2'1,5]pyrazolo[4,3-d]pyrimidin-4-amines was designed as a novel isosteric replacement for 4-aminoquinazolines, and compounds from within this chemotype exhibited dual NAM activity at both group I mGlus. One compound, VU0467558 (29), demonstrated near equipotent activity at both receptors, selectivity versus other mGlus, a favorable ancillary pharmacology profile, and CNS exposure in rodents.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Pirimidinas / Sistema Nervoso Central / Receptores de Glutamato Metabotrópico / Regulação Alostérica Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Pirimidinas / Sistema Nervoso Central / Receptores de Glutamato Metabotrópico / Regulação Alostérica Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article